538 research outputs found

    Micropropulsion Systems for Precision Controlled Space Flight

    Get PDF

    Inversion and Analysis of Remotely Sensed Atmospheric Water Vapor Measurements at 940nm

    Get PDF
    The understanding and acceptance of remotely sensed atmospheric data depends strongly on the steps taken to characterize experiment error and validate observations through comparisons to other independent measurements. A formal error analysis of the Stratospheric Aerosol and Gas Experiment II (SAGE II) water vapor operational inversion algorithm is performed and compared to previous results. Random measurement errors were characterized by segmented least-squares profile fitting of the slant path absorption which found the error to be uncorrelated in the stratosphere with estimated variances significantly smaller than expected from 18-30 km. Estimates of null space error were developed from radiosonde hygrometers in the troposphere and from SAGE II in the stratosphere. Systematic model bias errors are significant only in the troposphere where they reach 20% at the surface. Systematic errors associated with radiative transfer modeling are similar to previous analyses. A comparative error budget study between the operational inversion algorithm and several other algorithms was conducted with formal error analysis and by examining the error characteristics of two years\u27 data inverted with each algorithm. Four other algorithms were considered; onion peel, Mill-Drayson, Mill-Drayson with stratospheric profile smoothing, and a sparse grid non-linear least-squares fitting method. Stratospheric random errors were largest for the onion peel due to the lack of stratospheric profile smoothing while the Mill-Drayson with smoothing was identical to the operational. The Mill-Drayson algorithm exhibited random error reduction greater than expected from the form of the contribution function with stratospheric random errors approaching operational levels. The sparse grid contribution function was found to be relatively insensitive to grid point density and computationally intensive. SAGE II upper tropospheric observations are compared to radiosonde climatologies and in situ radiosonde reports. SAGE II clear sky climatologies are shown to be half the level of the clear/cloudy sky radiosonde climatologies while correlative comparisons display nearly the same amount of bias. Much of the bias is attributed to the least sensitive hygrometers with SAGE II agreeing quite well with the most accurate and responsive hygrometer. Incorporating isentropic trajectories into the pair matching process greatly increases the number of correlative points but does not materially affect the comparisons

    Observations of atmospheric water vapor with the SAGE 2 instrument

    Get PDF
    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition

    The national aeronautics and space council

    Get PDF
    Organization research program

    High salt intake augments excitability of PVN neurons in rats: Role of the endoplasmic reticulum Ca\u3csup\u3e2+\u3c/sup\u3e store

    Get PDF
    High salt (HS) intake sensitizes central autonomic circuitry leading to sympathoexcitation. However, its underlying mechanisms are not fully understood. We hypothesized that inhibition of PVN endoplasmic reticulum (ER) Ca2+ store function would augment PVN neuronal excitability and sympathetic nerve activity (SNA). We further hypothesized that a 2% (NaCl) HS diet for 5 weeks would reduce ER Ca2+ store function and increase excitability of PVN neurons with axon projections to the rostral ventrolateral medulla (PVN-RVLM) identified by retrograde label. PVN microinjection of the ER Ca2+ ATPase inhibitor thapsigargin (TG) increased SNA and mean arterial pressure (MAP) in a dose-dependent manner in rats with a normal salt (NS) diet (0.4%NaCl). In contrast, sympathoexcitatory responses to PVN TG were significantly (p \u3c 0.05) blunted in HS treated rats compared to NS treatment. In whole cell current-clamp recordings from PVN-RVLM neurons, graded current injections evoked graded increases in spike frequency. Maximum discharge was significantly augmented (p \u3c 0.05) by HS diet compared to NS group. Bath application of TG (0.5 ÎźM) increased excitability of PVN-RVLM neurons in NS (p \u3c 0.05), yet had no significant effect in HS rats. Our data indicate that HS intake augments excitability of PVN-RVLM neurons. Inhibition of the ER Ca2+ ATPase and depletion of Ca2+ store likely plays a role in increasing PVN neuronal excitability, which may underlie the mechanisms of sympathoexcitation in rats with chronic HS intake

    Assay and heterologous expression in Pichia pastoris of plant cell wall type-II membrane anchored glycosyltransferases

    Get PDF
    Two Arabidopsis xylosyltransferases, designated RGXT1 and RGXT2, were recently expressed in Baculovirus transfected insect cells and by use of the free sugar assay shown to catalyse transfer of D-xylose from UDP-α-D-xylose to L-fucose and derivatives hereof. We have now examined expression of RGXT1 and RGXT2 in Pichia pastoris and compared the two expression systems. Pichia transformants, expressing soluble, secreted forms of RGXT1 and RGXT2 with an N- or C-terminal Flag-tag, accumulated recombinant, hyper-glycosylated proteins at levels between 6 and 16 mg protein • L-1 in the media fractions. When incubated with 0.5 M L-fucose and UDP-D-xylose all four RGXT1 and RGXT2 variants catalyzed transfer of D-xylose onto L-fucose with estimated turnover numbers between 0.15 and 0.3 sec-1, thus demonstrating that a free C-terminus is not required for activity. N- and O-glycanase treatment resulted in deglycosylation of all four proteins, and this caused a loss of xylosyltransferase activity for the C-terminally but not the N-terminally Flag-tagged proteins. The RGXT1 and RGXT2 proteins displayed an absolute requirement for Mn2+ and were active over a broad pH range. Simple dialysis of media fractions or purification on phenyl Sepharose columns increased enzyme activities 2-8 fold enabling direct verification of the product formed in crude assay mixtures using electrospray ionization mass spectrometry. Pichia expressed and dialysed RGXT variants yielded activities within the range 0.011 to 0.013 U (1 U = 1 nmol conversion of substrate • min-1 • µl medium-1) similar to those of RGXT1 and RGXT2 expressed in Baculovirus transfected insect Sf9 cells. In summary, the data presented suggest that Pichia is an attractive host candidate for expression of plant glycosyltransferases
    • …
    corecore